Рассчитать высоту треугольника со сторонами 38, 29 и 19

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{38 + 29 + 19}{2}} \normalsize = 43}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43(43-38)(43-29)(43-19)}}{29}\normalsize = 18.5362068}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43(43-38)(43-29)(43-19)}}{38}\normalsize = 14.1460526}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43(43-38)(43-29)(43-19)}}{19}\normalsize = 28.2921051}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 38, 29 и 19 равна 18.5362068
Высота треугольника опущенная с вершины A на сторону BC со сторонами 38, 29 и 19 равна 14.1460526
Высота треугольника опущенная с вершины C на сторону AB со сторонами 38, 29 и 19 равна 28.2921051
Ссылка на результат
?n1=38&n2=29&n3=19