Рассчитать высоту треугольника со сторонами 38, 31 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{38 + 31 + 8}{2}} \normalsize = 38.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{38.5(38.5-38)(38.5-31)(38.5-8)}}{31}\normalsize = 4.28118722}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{38.5(38.5-38)(38.5-31)(38.5-8)}}{38}\normalsize = 3.49254747}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{38.5(38.5-38)(38.5-31)(38.5-8)}}{8}\normalsize = 16.5896005}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 38, 31 и 8 равна 4.28118722
Высота треугольника опущенная с вершины A на сторону BC со сторонами 38, 31 и 8 равна 3.49254747
Высота треугольника опущенная с вершины C на сторону AB со сторонами 38, 31 и 8 равна 16.5896005
Ссылка на результат
?n1=38&n2=31&n3=8
Найти высоту треугольника со сторонами 148, 125 и 60
Найти высоту треугольника со сторонами 138, 135 и 87
Найти высоту треугольника со сторонами 46, 43 и 7
Найти высоту треугольника со сторонами 97, 80 и 49
Найти высоту треугольника со сторонами 129, 91 и 82
Найти высоту треугольника со сторонами 138, 133 и 41
Найти высоту треугольника со сторонами 138, 135 и 87
Найти высоту треугольника со сторонами 46, 43 и 7
Найти высоту треугольника со сторонами 97, 80 и 49
Найти высоту треугольника со сторонами 129, 91 и 82
Найти высоту треугольника со сторонами 138, 133 и 41