Рассчитать высоту треугольника со сторонами 38, 33 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{38 + 33 + 15}{2}} \normalsize = 43}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43(43-38)(43-33)(43-15)}}{33}\normalsize = 14.8701141}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43(43-38)(43-33)(43-15)}}{38}\normalsize = 12.9135202}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43(43-38)(43-33)(43-15)}}{15}\normalsize = 32.7142511}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 38, 33 и 15 равна 14.8701141
Высота треугольника опущенная с вершины A на сторону BC со сторонами 38, 33 и 15 равна 12.9135202
Высота треугольника опущенная с вершины C на сторону AB со сторонами 38, 33 и 15 равна 32.7142511
Ссылка на результат
?n1=38&n2=33&n3=15
Найти высоту треугольника со сторонами 116, 112 и 92
Найти высоту треугольника со сторонами 138, 108 и 104
Найти высоту треугольника со сторонами 150, 89 и 81
Найти высоту треугольника со сторонами 145, 137 и 109
Найти высоту треугольника со сторонами 136, 133 и 68
Найти высоту треугольника со сторонами 99, 82 и 80
Найти высоту треугольника со сторонами 138, 108 и 104
Найти высоту треугольника со сторонами 150, 89 и 81
Найти высоту треугольника со сторонами 145, 137 и 109
Найти высоту треугольника со сторонами 136, 133 и 68
Найти высоту треугольника со сторонами 99, 82 и 80