Рассчитать высоту треугольника со сторонами 38, 34 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{38 + 34 + 30}{2}} \normalsize = 51}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{51(51-38)(51-34)(51-30)}}{34}\normalsize = 28.618176}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{51(51-38)(51-34)(51-30)}}{38}\normalsize = 25.6057365}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{51(51-38)(51-34)(51-30)}}{30}\normalsize = 32.4339328}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 38, 34 и 30 равна 28.618176
Высота треугольника опущенная с вершины A на сторону BC со сторонами 38, 34 и 30 равна 25.6057365
Высота треугольника опущенная с вершины C на сторону AB со сторонами 38, 34 и 30 равна 32.4339328
Ссылка на результат
?n1=38&n2=34&n3=30
Найти высоту треугольника со сторонами 106, 94 и 17
Найти высоту треугольника со сторонами 98, 87 и 83
Найти высоту треугольника со сторонами 61, 61 и 21
Найти высоту треугольника со сторонами 27, 16 и 12
Найти высоту треугольника со сторонами 136, 118 и 95
Найти высоту треугольника со сторонами 120, 104 и 41
Найти высоту треугольника со сторонами 98, 87 и 83
Найти высоту треугольника со сторонами 61, 61 и 21
Найти высоту треугольника со сторонами 27, 16 и 12
Найти высоту треугольника со сторонами 136, 118 и 95
Найти высоту треугольника со сторонами 120, 104 и 41