Рассчитать высоту треугольника со сторонами 38, 38 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{38 + 38 + 26}{2}} \normalsize = 51}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{51(51-38)(51-38)(51-26)}}{38}\normalsize = 24.4312025}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{51(51-38)(51-38)(51-26)}}{38}\normalsize = 24.4312025}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{51(51-38)(51-38)(51-26)}}{26}\normalsize = 35.7071421}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 38, 38 и 26 равна 24.4312025
Высота треугольника опущенная с вершины A на сторону BC со сторонами 38, 38 и 26 равна 24.4312025
Высота треугольника опущенная с вершины C на сторону AB со сторонами 38, 38 и 26 равна 35.7071421
Ссылка на результат
?n1=38&n2=38&n3=26
Найти высоту треугольника со сторонами 65, 62 и 51
Найти высоту треугольника со сторонами 134, 128 и 31
Найти высоту треугольника со сторонами 97, 86 и 59
Найти высоту треугольника со сторонами 54, 54 и 15
Найти высоту треугольника со сторонами 127, 71 и 68
Найти высоту треугольника со сторонами 35, 27 и 11
Найти высоту треугольника со сторонами 134, 128 и 31
Найти высоту треугольника со сторонами 97, 86 и 59
Найти высоту треугольника со сторонами 54, 54 и 15
Найти высоту треугольника со сторонами 127, 71 и 68
Найти высоту треугольника со сторонами 35, 27 и 11