Рассчитать высоту треугольника со сторонами 39, 24 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{39 + 24 + 16}{2}} \normalsize = 39.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{39.5(39.5-39)(39.5-24)(39.5-16)}}{24}\normalsize = 7.06809022}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{39.5(39.5-39)(39.5-24)(39.5-16)}}{39}\normalsize = 4.34959398}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{39.5(39.5-39)(39.5-24)(39.5-16)}}{16}\normalsize = 10.6021353}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 39, 24 и 16 равна 7.06809022
Высота треугольника опущенная с вершины A на сторону BC со сторонами 39, 24 и 16 равна 4.34959398
Высота треугольника опущенная с вершины C на сторону AB со сторонами 39, 24 и 16 равна 10.6021353
Ссылка на результат
?n1=39&n2=24&n3=16
Найти высоту треугольника со сторонами 40, 35 и 30
Найти высоту треугольника со сторонами 106, 79 и 45
Найти высоту треугольника со сторонами 111, 101 и 32
Найти высоту треугольника со сторонами 147, 146 и 113
Найти высоту треугольника со сторонами 99, 63 и 37
Найти высоту треугольника со сторонами 132, 124 и 92
Найти высоту треугольника со сторонами 106, 79 и 45
Найти высоту треугольника со сторонами 111, 101 и 32
Найти высоту треугольника со сторонами 147, 146 и 113
Найти высоту треугольника со сторонами 99, 63 и 37
Найти высоту треугольника со сторонами 132, 124 и 92