Рассчитать высоту треугольника со сторонами 39, 31 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{39 + 31 + 22}{2}} \normalsize = 46}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{46(46-39)(46-31)(46-22)}}{31}\normalsize = 21.9658234}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{46(46-39)(46-31)(46-22)}}{39}\normalsize = 17.4600135}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{46(46-39)(46-31)(46-22)}}{22}\normalsize = 30.9518421}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 39, 31 и 22 равна 21.9658234
Высота треугольника опущенная с вершины A на сторону BC со сторонами 39, 31 и 22 равна 17.4600135
Высота треугольника опущенная с вершины C на сторону AB со сторонами 39, 31 и 22 равна 30.9518421
Ссылка на результат
?n1=39&n2=31&n3=22
Найти высоту треугольника со сторонами 24, 22 и 20
Найти высоту треугольника со сторонами 118, 112 и 109
Найти высоту треугольника со сторонами 149, 142 и 104
Найти высоту треугольника со сторонами 98, 79 и 65
Найти высоту треугольника со сторонами 150, 126 и 55
Найти высоту треугольника со сторонами 146, 103 и 58
Найти высоту треугольника со сторонами 118, 112 и 109
Найти высоту треугольника со сторонами 149, 142 и 104
Найти высоту треугольника со сторонами 98, 79 и 65
Найти высоту треугольника со сторонами 150, 126 и 55
Найти высоту треугольника со сторонами 146, 103 и 58