Рассчитать высоту треугольника со сторонами 39, 32 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{39 + 32 + 27}{2}} \normalsize = 49}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{49(49-39)(49-32)(49-27)}}{32}\normalsize = 26.7555485}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{49(49-39)(49-32)(49-27)}}{39}\normalsize = 21.9532706}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{49(49-39)(49-32)(49-27)}}{27}\normalsize = 31.7102797}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 39, 32 и 27 равна 26.7555485
Высота треугольника опущенная с вершины A на сторону BC со сторонами 39, 32 и 27 равна 21.9532706
Высота треугольника опущенная с вершины C на сторону AB со сторонами 39, 32 и 27 равна 31.7102797
Ссылка на результат
?n1=39&n2=32&n3=27
Найти высоту треугольника со сторонами 104, 102 и 14
Найти высоту треугольника со сторонами 134, 111 и 77
Найти высоту треугольника со сторонами 134, 125 и 112
Найти высоту треугольника со сторонами 69, 67 и 38
Найти высоту треугольника со сторонами 131, 118 и 110
Найти высоту треугольника со сторонами 96, 93 и 10
Найти высоту треугольника со сторонами 134, 111 и 77
Найти высоту треугольника со сторонами 134, 125 и 112
Найти высоту треугольника со сторонами 69, 67 и 38
Найти высоту треугольника со сторонами 131, 118 и 110
Найти высоту треугольника со сторонами 96, 93 и 10