Рассчитать высоту треугольника со сторонами 39, 34 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{39 + 34 + 20}{2}} \normalsize = 46.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{46.5(46.5-39)(46.5-34)(46.5-20)}}{34}\normalsize = 19.9933758}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{46.5(46.5-39)(46.5-34)(46.5-20)}}{39}\normalsize = 17.4301225}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{46.5(46.5-39)(46.5-34)(46.5-20)}}{20}\normalsize = 33.9887389}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 39, 34 и 20 равна 19.9933758
Высота треугольника опущенная с вершины A на сторону BC со сторонами 39, 34 и 20 равна 17.4301225
Высота треугольника опущенная с вершины C на сторону AB со сторонами 39, 34 и 20 равна 33.9887389
Ссылка на результат
?n1=39&n2=34&n3=20
Найти высоту треугольника со сторонами 81, 81 и 49
Найти высоту треугольника со сторонами 75, 56 и 48
Найти высоту треугольника со сторонами 117, 108 и 87
Найти высоту треугольника со сторонами 62, 54 и 43
Найти высоту треугольника со сторонами 123, 105 и 59
Найти высоту треугольника со сторонами 147, 134 и 48
Найти высоту треугольника со сторонами 75, 56 и 48
Найти высоту треугольника со сторонами 117, 108 и 87
Найти высоту треугольника со сторонами 62, 54 и 43
Найти высоту треугольника со сторонами 123, 105 и 59
Найти высоту треугольника со сторонами 147, 134 и 48