Рассчитать высоту треугольника со сторонами 40, 22 и 22

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{40 + 22 + 22}{2}} \normalsize = 42}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{42(42-40)(42-22)(42-22)}}{22}\normalsize = 16.6639116}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{42(42-40)(42-22)(42-22)}}{40}\normalsize = 9.16515139}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{42(42-40)(42-22)(42-22)}}{22}\normalsize = 16.6639116}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 40, 22 и 22 равна 16.6639116
Высота треугольника опущенная с вершины A на сторону BC со сторонами 40, 22 и 22 равна 9.16515139
Высота треугольника опущенная с вершины C на сторону AB со сторонами 40, 22 и 22 равна 16.6639116
Ссылка на результат
?n1=40&n2=22&n3=22