Рассчитать высоту треугольника со сторонами 40, 24 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{40 + 24 + 20}{2}} \normalsize = 42}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{42(42-40)(42-24)(42-20)}}{24}\normalsize = 15.1986842}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{42(42-40)(42-24)(42-20)}}{40}\normalsize = 9.11921049}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{42(42-40)(42-24)(42-20)}}{20}\normalsize = 18.238421}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 40, 24 и 20 равна 15.1986842
Высота треугольника опущенная с вершины A на сторону BC со сторонами 40, 24 и 20 равна 9.11921049
Высота треугольника опущенная с вершины C на сторону AB со сторонами 40, 24 и 20 равна 18.238421
Ссылка на результат
?n1=40&n2=24&n3=20
Найти высоту треугольника со сторонами 23, 23 и 22
Найти высоту треугольника со сторонами 139, 137 и 29
Найти высоту треугольника со сторонами 111, 98 и 47
Найти высоту треугольника со сторонами 125, 118 и 118
Найти высоту треугольника со сторонами 149, 147 и 72
Найти высоту треугольника со сторонами 78, 44 и 37
Найти высоту треугольника со сторонами 139, 137 и 29
Найти высоту треугольника со сторонами 111, 98 и 47
Найти высоту треугольника со сторонами 125, 118 и 118
Найти высоту треугольника со сторонами 149, 147 и 72
Найти высоту треугольника со сторонами 78, 44 и 37