Рассчитать высоту треугольника со сторонами 40, 28 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{40 + 28 + 14}{2}} \normalsize = 41}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{41(41-40)(41-28)(41-14)}}{28}\normalsize = 8.56874958}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{41(41-40)(41-28)(41-14)}}{40}\normalsize = 5.99812471}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{41(41-40)(41-28)(41-14)}}{14}\normalsize = 17.1374992}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 40, 28 и 14 равна 8.56874958
Высота треугольника опущенная с вершины A на сторону BC со сторонами 40, 28 и 14 равна 5.99812471
Высота треугольника опущенная с вершины C на сторону AB со сторонами 40, 28 и 14 равна 17.1374992
Ссылка на результат
?n1=40&n2=28&n3=14
Найти высоту треугольника со сторонами 148, 141 и 141
Найти высоту треугольника со сторонами 124, 71 и 70
Найти высоту треугольника со сторонами 111, 78 и 58
Найти высоту треугольника со сторонами 137, 120 и 68
Найти высоту треугольника со сторонами 138, 73 и 71
Найти высоту треугольника со сторонами 86, 76 и 17
Найти высоту треугольника со сторонами 124, 71 и 70
Найти высоту треугольника со сторонами 111, 78 и 58
Найти высоту треугольника со сторонами 137, 120 и 68
Найти высоту треугольника со сторонами 138, 73 и 71
Найти высоту треугольника со сторонами 86, 76 и 17