Рассчитать высоту треугольника со сторонами 40, 36 и 17

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{40 + 36 + 17}{2}} \normalsize = 46.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{46.5(46.5-40)(46.5-36)(46.5-17)}}{36}\normalsize = 16.9987234}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{46.5(46.5-40)(46.5-36)(46.5-17)}}{40}\normalsize = 15.2988511}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{46.5(46.5-40)(46.5-36)(46.5-17)}}{17}\normalsize = 35.9972966}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 40, 36 и 17 равна 16.9987234
Высота треугольника опущенная с вершины A на сторону BC со сторонами 40, 36 и 17 равна 15.2988511
Высота треугольника опущенная с вершины C на сторону AB со сторонами 40, 36 и 17 равна 35.9972966
Ссылка на результат
?n1=40&n2=36&n3=17