Рассчитать высоту треугольника со сторонами 41, 27 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{41 + 27 + 18}{2}} \normalsize = 43}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43(43-41)(43-27)(43-18)}}{27}\normalsize = 13.7386941}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43(43-41)(43-27)(43-18)}}{41}\normalsize = 9.04743268}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43(43-41)(43-27)(43-18)}}{18}\normalsize = 20.6080411}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 41, 27 и 18 равна 13.7386941
Высота треугольника опущенная с вершины A на сторону BC со сторонами 41, 27 и 18 равна 9.04743268
Высота треугольника опущенная с вершины C на сторону AB со сторонами 41, 27 и 18 равна 20.6080411
Ссылка на результат
?n1=41&n2=27&n3=18
Найти высоту треугольника со сторонами 126, 85 и 64
Найти высоту треугольника со сторонами 145, 125 и 42
Найти высоту треугольника со сторонами 116, 116 и 80
Найти высоту треугольника со сторонами 122, 96 и 44
Найти высоту треугольника со сторонами 126, 104 и 50
Найти высоту треугольника со сторонами 61, 44 и 28
Найти высоту треугольника со сторонами 145, 125 и 42
Найти высоту треугольника со сторонами 116, 116 и 80
Найти высоту треугольника со сторонами 122, 96 и 44
Найти высоту треугольника со сторонами 126, 104 и 50
Найти высоту треугольника со сторонами 61, 44 и 28