Рассчитать высоту треугольника со сторонами 41, 36 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{41 + 36 + 13}{2}} \normalsize = 45}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{45(45-41)(45-36)(45-13)}}{36}\normalsize = 12.6491106}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{45(45-41)(45-36)(45-13)}}{41}\normalsize = 11.1065362}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{45(45-41)(45-36)(45-13)}}{13}\normalsize = 35.0283064}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 41, 36 и 13 равна 12.6491106
Высота треугольника опущенная с вершины A на сторону BC со сторонами 41, 36 и 13 равна 11.1065362
Высота треугольника опущенная с вершины C на сторону AB со сторонами 41, 36 и 13 равна 35.0283064
Ссылка на результат
?n1=41&n2=36&n3=13
Найти высоту треугольника со сторонами 117, 113 и 71
Найти высоту треугольника со сторонами 117, 85 и 36
Найти высоту треугольника со сторонами 63, 42 и 25
Найти высоту треугольника со сторонами 98, 95 и 26
Найти высоту треугольника со сторонами 113, 102 и 73
Найти высоту треугольника со сторонами 107, 104 и 37
Найти высоту треугольника со сторонами 117, 85 и 36
Найти высоту треугольника со сторонами 63, 42 и 25
Найти высоту треугольника со сторонами 98, 95 и 26
Найти высоту треугольника со сторонами 113, 102 и 73
Найти высоту треугольника со сторонами 107, 104 и 37