Рассчитать высоту треугольника со сторонами 42, 29 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{42 + 29 + 27}{2}} \normalsize = 49}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{49(49-42)(49-29)(49-27)}}{29}\normalsize = 26.7920161}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{49(49-42)(49-29)(49-27)}}{42}\normalsize = 18.4992492}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{49(49-42)(49-29)(49-27)}}{27}\normalsize = 28.7766099}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 42, 29 и 27 равна 26.7920161
Высота треугольника опущенная с вершины A на сторону BC со сторонами 42, 29 и 27 равна 18.4992492
Высота треугольника опущенная с вершины C на сторону AB со сторонами 42, 29 и 27 равна 28.7766099
Ссылка на результат
?n1=42&n2=29&n3=27
Найти высоту треугольника со сторонами 47, 47 и 39
Найти высоту треугольника со сторонами 113, 81 и 60
Найти высоту треугольника со сторонами 148, 147 и 44
Найти высоту треугольника со сторонами 109, 80 и 36
Найти высоту треугольника со сторонами 89, 70 и 61
Найти высоту треугольника со сторонами 118, 84 и 52
Найти высоту треугольника со сторонами 113, 81 и 60
Найти высоту треугольника со сторонами 148, 147 и 44
Найти высоту треугольника со сторонами 109, 80 и 36
Найти высоту треугольника со сторонами 89, 70 и 61
Найти высоту треугольника со сторонами 118, 84 и 52