Рассчитать высоту треугольника со сторонами 42, 33 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{42 + 33 + 11}{2}} \normalsize = 43}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43(43-42)(43-33)(43-11)}}{33}\normalsize = 7.10927433}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43(43-42)(43-33)(43-11)}}{42}\normalsize = 5.5858584}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43(43-42)(43-33)(43-11)}}{11}\normalsize = 21.327823}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 42, 33 и 11 равна 7.10927433
Высота треугольника опущенная с вершины A на сторону BC со сторонами 42, 33 и 11 равна 5.5858584
Высота треугольника опущенная с вершины C на сторону AB со сторонами 42, 33 и 11 равна 21.327823
Ссылка на результат
?n1=42&n2=33&n3=11
Найти высоту треугольника со сторонами 59, 48 и 27
Найти высоту треугольника со сторонами 89, 71 и 20
Найти высоту треугольника со сторонами 109, 106 и 29
Найти высоту треугольника со сторонами 130, 103 и 48
Найти высоту треугольника со сторонами 89, 82 и 66
Найти высоту треугольника со сторонами 145, 121 и 91
Найти высоту треугольника со сторонами 89, 71 и 20
Найти высоту треугольника со сторонами 109, 106 и 29
Найти высоту треугольника со сторонами 130, 103 и 48
Найти высоту треугольника со сторонами 89, 82 и 66
Найти высоту треугольника со сторонами 145, 121 и 91