Рассчитать высоту треугольника со сторонами 42, 35 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{42 + 35 + 13}{2}} \normalsize = 45}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{45(45-42)(45-35)(45-13)}}{35}\normalsize = 11.8769198}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{45(45-42)(45-35)(45-13)}}{42}\normalsize = 9.89743319}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{45(45-42)(45-35)(45-13)}}{13}\normalsize = 31.9763226}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 42, 35 и 13 равна 11.8769198
Высота треугольника опущенная с вершины A на сторону BC со сторонами 42, 35 и 13 равна 9.89743319
Высота треугольника опущенная с вершины C на сторону AB со сторонами 42, 35 и 13 равна 31.9763226
Ссылка на результат
?n1=42&n2=35&n3=13
Найти высоту треугольника со сторонами 89, 66 и 54
Найти высоту треугольника со сторонами 134, 121 и 82
Найти высоту треугольника со сторонами 100, 71 и 66
Найти высоту треугольника со сторонами 144, 115 и 73
Найти высоту треугольника со сторонами 137, 114 и 97
Найти высоту треугольника со сторонами 144, 139 и 7
Найти высоту треугольника со сторонами 134, 121 и 82
Найти высоту треугольника со сторонами 100, 71 и 66
Найти высоту треугольника со сторонами 144, 115 и 73
Найти высоту треугольника со сторонами 137, 114 и 97
Найти высоту треугольника со сторонами 144, 139 и 7