Рассчитать высоту треугольника со сторонами 42, 38 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{42 + 38 + 24}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-42)(52-38)(52-24)}}{38}\normalsize = 23.7624439}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-42)(52-38)(52-24)}}{42}\normalsize = 21.499354}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-42)(52-38)(52-24)}}{24}\normalsize = 37.6238695}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 42, 38 и 24 равна 23.7624439
Высота треугольника опущенная с вершины A на сторону BC со сторонами 42, 38 и 24 равна 21.499354
Высота треугольника опущенная с вершины C на сторону AB со сторонами 42, 38 и 24 равна 37.6238695
Ссылка на результат
?n1=42&n2=38&n3=24
Найти высоту треугольника со сторонами 149, 148 и 7
Найти высоту треугольника со сторонами 134, 96 и 87
Найти высоту треугольника со сторонами 142, 141 и 54
Найти высоту треугольника со сторонами 104, 102 и 95
Найти высоту треугольника со сторонами 67, 42 и 34
Найти высоту треугольника со сторонами 83, 83 и 18
Найти высоту треугольника со сторонами 134, 96 и 87
Найти высоту треугольника со сторонами 142, 141 и 54
Найти высоту треугольника со сторонами 104, 102 и 95
Найти высоту треугольника со сторонами 67, 42 и 34
Найти высоту треугольника со сторонами 83, 83 и 18