Рассчитать высоту треугольника со сторонами 42, 38 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{42 + 38 + 26}{2}} \normalsize = 53}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53(53-42)(53-38)(53-26)}}{38}\normalsize = 25.574561}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53(53-42)(53-38)(53-26)}}{42}\normalsize = 23.1388885}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53(53-42)(53-38)(53-26)}}{26}\normalsize = 37.3782046}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 42, 38 и 26 равна 25.574561
Высота треугольника опущенная с вершины A на сторону BC со сторонами 42, 38 и 26 равна 23.1388885
Высота треугольника опущенная с вершины C на сторону AB со сторонами 42, 38 и 26 равна 37.3782046
Ссылка на результат
?n1=42&n2=38&n3=26
Найти высоту треугольника со сторонами 86, 68 и 59
Найти высоту треугольника со сторонами 87, 65 и 27
Найти высоту треугольника со сторонами 90, 79 и 64
Найти высоту треугольника со сторонами 131, 115 и 17
Найти высоту треугольника со сторонами 54, 36 и 21
Найти высоту треугольника со сторонами 86, 54 и 44
Найти высоту треугольника со сторонами 87, 65 и 27
Найти высоту треугольника со сторонами 90, 79 и 64
Найти высоту треугольника со сторонами 131, 115 и 17
Найти высоту треугольника со сторонами 54, 36 и 21
Найти высоту треугольника со сторонами 86, 54 и 44