Рассчитать высоту треугольника со сторонами 42, 40 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{42 + 40 + 12}{2}} \normalsize = 47}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{47(47-42)(47-40)(47-12)}}{40}\normalsize = 11.9973956}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{47(47-42)(47-40)(47-12)}}{42}\normalsize = 11.426091}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{47(47-42)(47-40)(47-12)}}{12}\normalsize = 39.9913185}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 42, 40 и 12 равна 11.9973956
Высота треугольника опущенная с вершины A на сторону BC со сторонами 42, 40 и 12 равна 11.426091
Высота треугольника опущенная с вершины C на сторону AB со сторонами 42, 40 и 12 равна 39.9913185
Ссылка на результат
?n1=42&n2=40&n3=12
Найти высоту треугольника со сторонами 118, 98 и 80
Найти высоту треугольника со сторонами 119, 96 и 76
Найти высоту треугольника со сторонами 130, 100 и 63
Найти высоту треугольника со сторонами 143, 138 и 69
Найти высоту треугольника со сторонами 131, 121 и 106
Найти высоту треугольника со сторонами 72, 56 и 51
Найти высоту треугольника со сторонами 119, 96 и 76
Найти высоту треугольника со сторонами 130, 100 и 63
Найти высоту треугольника со сторонами 143, 138 и 69
Найти высоту треугольника со сторонами 131, 121 и 106
Найти высоту треугольника со сторонами 72, 56 и 51