Рассчитать высоту треугольника со сторонами 43, 29 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{43 + 29 + 22}{2}} \normalsize = 47}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{47(47-43)(47-29)(47-22)}}{29}\normalsize = 20.0593649}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{47(47-43)(47-29)(47-22)}}{43}\normalsize = 13.5284089}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{47(47-43)(47-29)(47-22)}}{22}\normalsize = 26.4418901}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 43, 29 и 22 равна 20.0593649
Высота треугольника опущенная с вершины A на сторону BC со сторонами 43, 29 и 22 равна 13.5284089
Высота треугольника опущенная с вершины C на сторону AB со сторонами 43, 29 и 22 равна 26.4418901
Ссылка на результат
?n1=43&n2=29&n3=22
Найти высоту треугольника со сторонами 135, 89 и 77
Найти высоту треугольника со сторонами 96, 81 и 43
Найти высоту треугольника со сторонами 130, 124 и 118
Найти высоту треугольника со сторонами 145, 132 и 97
Найти высоту треугольника со сторонами 146, 130 и 116
Найти высоту треугольника со сторонами 113, 111 и 45
Найти высоту треугольника со сторонами 96, 81 и 43
Найти высоту треугольника со сторонами 130, 124 и 118
Найти высоту треугольника со сторонами 145, 132 и 97
Найти высоту треугольника со сторонами 146, 130 и 116
Найти высоту треугольника со сторонами 113, 111 и 45