Рассчитать высоту треугольника со сторонами 43, 35 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{43 + 35 + 22}{2}} \normalsize = 50}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50(50-43)(50-35)(50-22)}}{35}\normalsize = 21.9089023}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50(50-43)(50-35)(50-22)}}{43}\normalsize = 17.8328275}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50(50-43)(50-35)(50-22)}}{22}\normalsize = 34.8550718}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 43, 35 и 22 равна 21.9089023
Высота треугольника опущенная с вершины A на сторону BC со сторонами 43, 35 и 22 равна 17.8328275
Высота треугольника опущенная с вершины C на сторону AB со сторонами 43, 35 и 22 равна 34.8550718
Ссылка на результат
?n1=43&n2=35&n3=22
Найти высоту треугольника со сторонами 109, 90 и 24
Найти высоту треугольника со сторонами 141, 138 и 40
Найти высоту треугольника со сторонами 118, 115 и 76
Найти высоту треугольника со сторонами 107, 73 и 37
Найти высоту треугольника со сторонами 91, 88 и 25
Найти высоту треугольника со сторонами 135, 113 и 42
Найти высоту треугольника со сторонами 141, 138 и 40
Найти высоту треугольника со сторонами 118, 115 и 76
Найти высоту треугольника со сторонами 107, 73 и 37
Найти высоту треугольника со сторонами 91, 88 и 25
Найти высоту треугольника со сторонами 135, 113 и 42