Рассчитать высоту треугольника со сторонами 43, 37 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{43 + 37 + 16}{2}} \normalsize = 48}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{48(48-43)(48-37)(48-16)}}{37}\normalsize = 15.7110505}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{48(48-43)(48-37)(48-16)}}{43}\normalsize = 13.5188109}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{48(48-43)(48-37)(48-16)}}{16}\normalsize = 36.3318042}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 43, 37 и 16 равна 15.7110505
Высота треугольника опущенная с вершины A на сторону BC со сторонами 43, 37 и 16 равна 13.5188109
Высота треугольника опущенная с вершины C на сторону AB со сторонами 43, 37 и 16 равна 36.3318042
Ссылка на результат
?n1=43&n2=37&n3=16
Найти высоту треугольника со сторонами 139, 127 и 41
Найти высоту треугольника со сторонами 100, 86 и 30
Найти высоту треугольника со сторонами 137, 134 и 40
Найти высоту треугольника со сторонами 131, 116 и 105
Найти высоту треугольника со сторонами 62, 41 и 34
Найти высоту треугольника со сторонами 75, 74 и 8
Найти высоту треугольника со сторонами 100, 86 и 30
Найти высоту треугольника со сторонами 137, 134 и 40
Найти высоту треугольника со сторонами 131, 116 и 105
Найти высоту треугольника со сторонами 62, 41 и 34
Найти высоту треугольника со сторонами 75, 74 и 8