Рассчитать высоту треугольника со сторонами 43, 37 и 26

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{43 + 37 + 26}{2}} \normalsize = 53}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53(53-43)(53-37)(53-26)}}{37}\normalsize = 25.8647378}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53(53-43)(53-37)(53-26)}}{43}\normalsize = 22.2557046}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53(53-43)(53-37)(53-26)}}{26}\normalsize = 36.8075115}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 43, 37 и 26 равна 25.8647378
Высота треугольника опущенная с вершины A на сторону BC со сторонами 43, 37 и 26 равна 22.2557046
Высота треугольника опущенная с вершины C на сторону AB со сторонами 43, 37 и 26 равна 36.8075115
Ссылка на результат
?n1=43&n2=37&n3=26