Рассчитать высоту треугольника со сторонами 43, 43 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{43 + 43 + 20}{2}} \normalsize = 53}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53(53-43)(53-43)(53-20)}}{43}\normalsize = 19.4516499}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53(53-43)(53-43)(53-20)}}{43}\normalsize = 19.4516499}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53(53-43)(53-43)(53-20)}}{20}\normalsize = 41.8210473}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 43, 43 и 20 равна 19.4516499
Высота треугольника опущенная с вершины A на сторону BC со сторонами 43, 43 и 20 равна 19.4516499
Высота треугольника опущенная с вершины C на сторону AB со сторонами 43, 43 и 20 равна 41.8210473
Ссылка на результат
?n1=43&n2=43&n3=20
Найти высоту треугольника со сторонами 90, 82 и 32
Найти высоту треугольника со сторонами 71, 57 и 22
Найти высоту треугольника со сторонами 55, 48 и 44
Найти высоту треугольника со сторонами 145, 98 и 96
Найти высоту треугольника со сторонами 117, 114 и 66
Найти высоту треугольника со сторонами 113, 100 и 75
Найти высоту треугольника со сторонами 71, 57 и 22
Найти высоту треугольника со сторонами 55, 48 и 44
Найти высоту треугольника со сторонами 145, 98 и 96
Найти высоту треугольника со сторонами 117, 114 и 66
Найти высоту треугольника со сторонами 113, 100 и 75