Рассчитать высоту треугольника со сторонами 45, 42 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{45 + 42 + 11}{2}} \normalsize = 49}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{49(49-45)(49-42)(49-11)}}{42}\normalsize = 10.8730043}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{49(49-45)(49-42)(49-11)}}{45}\normalsize = 10.1481373}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{49(49-45)(49-42)(49-11)}}{11}\normalsize = 41.5151073}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 45, 42 и 11 равна 10.8730043
Высота треугольника опущенная с вершины A на сторону BC со сторонами 45, 42 и 11 равна 10.1481373
Высота треугольника опущенная с вершины C на сторону AB со сторонами 45, 42 и 11 равна 41.5151073
Ссылка на результат
?n1=45&n2=42&n3=11
Найти высоту треугольника со сторонами 100, 75 и 60
Найти высоту треугольника со сторонами 128, 94 и 48
Найти высоту треугольника со сторонами 138, 83 и 62
Найти высоту треугольника со сторонами 142, 123 и 116
Найти высоту треугольника со сторонами 105, 82 и 50
Найти высоту треугольника со сторонами 142, 133 и 67
Найти высоту треугольника со сторонами 128, 94 и 48
Найти высоту треугольника со сторонами 138, 83 и 62
Найти высоту треугольника со сторонами 142, 123 и 116
Найти высоту треугольника со сторонами 105, 82 и 50
Найти высоту треугольника со сторонами 142, 133 и 67