Рассчитать высоту треугольника со сторонами 45, 43 и 12

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{45 + 43 + 12}{2}} \normalsize = 50}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50(50-45)(50-43)(50-12)}}{43}\normalsize = 11.9942297}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50(50-45)(50-43)(50-12)}}{45}\normalsize = 11.4611529}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50(50-45)(50-43)(50-12)}}{12}\normalsize = 42.9793232}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 45, 43 и 12 равна 11.9942297
Высота треугольника опущенная с вершины A на сторону BC со сторонами 45, 43 и 12 равна 11.4611529
Высота треугольника опущенная с вершины C на сторону AB со сторонами 45, 43 и 12 равна 42.9793232
Ссылка на результат
?n1=45&n2=43&n3=12