Рассчитать высоту треугольника со сторонами 45, 44 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{45 + 44 + 20}{2}} \normalsize = 54.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54.5(54.5-45)(54.5-44)(54.5-20)}}{44}\normalsize = 19.6852788}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54.5(54.5-45)(54.5-44)(54.5-20)}}{45}\normalsize = 19.2478282}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54.5(54.5-45)(54.5-44)(54.5-20)}}{20}\normalsize = 43.3076134}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 45, 44 и 20 равна 19.6852788
Высота треугольника опущенная с вершины A на сторону BC со сторонами 45, 44 и 20 равна 19.2478282
Высота треугольника опущенная с вершины C на сторону AB со сторонами 45, 44 и 20 равна 43.3076134
Ссылка на результат
?n1=45&n2=44&n3=20
Найти высоту треугольника со сторонами 130, 125 и 75
Найти высоту треугольника со сторонами 123, 92 и 51
Найти высоту треугольника со сторонами 80, 73 и 10
Найти высоту треугольника со сторонами 125, 125 и 69
Найти высоту треугольника со сторонами 146, 126 и 59
Найти высоту треугольника со сторонами 120, 95 и 62
Найти высоту треугольника со сторонами 123, 92 и 51
Найти высоту треугольника со сторонами 80, 73 и 10
Найти высоту треугольника со сторонами 125, 125 и 69
Найти высоту треугольника со сторонами 146, 126 и 59
Найти высоту треугольника со сторонами 120, 95 и 62