Рассчитать высоту треугольника со сторонами 46, 28 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 28 + 22}{2}} \normalsize = 48}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{48(48-46)(48-28)(48-22)}}{28}\normalsize = 15.9591315}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{48(48-46)(48-28)(48-22)}}{46}\normalsize = 9.71425394}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{48(48-46)(48-28)(48-22)}}{22}\normalsize = 20.3116219}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 28 и 22 равна 15.9591315
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 28 и 22 равна 9.71425394
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 28 и 22 равна 20.3116219
Ссылка на результат
?n1=46&n2=28&n3=22
Найти высоту треугольника со сторонами 148, 142 и 58
Найти высоту треугольника со сторонами 137, 104 и 38
Найти высоту треугольника со сторонами 150, 111 и 45
Найти высоту треугольника со сторонами 70, 67 и 51
Найти высоту треугольника со сторонами 100, 84 и 56
Найти высоту треугольника со сторонами 112, 96 и 50
Найти высоту треугольника со сторонами 137, 104 и 38
Найти высоту треугольника со сторонами 150, 111 и 45
Найти высоту треугольника со сторонами 70, 67 и 51
Найти высоту треугольника со сторонами 100, 84 и 56
Найти высоту треугольника со сторонами 112, 96 и 50