Рассчитать высоту треугольника со сторонами 46, 28 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 28 + 26}{2}} \normalsize = 50}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50(50-46)(50-28)(50-26)}}{28}\normalsize = 23.2115383}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50(50-46)(50-28)(50-26)}}{46}\normalsize = 14.1287624}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50(50-46)(50-28)(50-26)}}{26}\normalsize = 24.9970412}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 28 и 26 равна 23.2115383
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 28 и 26 равна 14.1287624
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 28 и 26 равна 24.9970412
Ссылка на результат
?n1=46&n2=28&n3=26
Найти высоту треугольника со сторонами 108, 101 и 58
Найти высоту треугольника со сторонами 135, 102 и 64
Найти высоту треугольника со сторонами 124, 120 и 73
Найти высоту треугольника со сторонами 95, 80 и 52
Найти высоту треугольника со сторонами 143, 128 и 128
Найти высоту треугольника со сторонами 111, 109 и 97
Найти высоту треугольника со сторонами 135, 102 и 64
Найти высоту треугольника со сторонами 124, 120 и 73
Найти высоту треугольника со сторонами 95, 80 и 52
Найти высоту треугольника со сторонами 143, 128 и 128
Найти высоту треугольника со сторонами 111, 109 и 97