Рассчитать высоту треугольника со сторонами 46, 30 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 30 + 19}{2}} \normalsize = 47.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{47.5(47.5-46)(47.5-30)(47.5-19)}}{30}\normalsize = 12.5673187}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{47.5(47.5-46)(47.5-30)(47.5-19)}}{46}\normalsize = 8.19607743}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{47.5(47.5-46)(47.5-30)(47.5-19)}}{19}\normalsize = 19.8431348}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 30 и 19 равна 12.5673187
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 30 и 19 равна 8.19607743
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 30 и 19 равна 19.8431348
Ссылка на результат
?n1=46&n2=30&n3=19
Найти высоту треугольника со сторонами 117, 84 и 45
Найти высоту треугольника со сторонами 78, 71 и 67
Найти высоту треугольника со сторонами 61, 61 и 32
Найти высоту треугольника со сторонами 126, 118 и 24
Найти высоту треугольника со сторонами 127, 119 и 75
Найти высоту треугольника со сторонами 117, 111 и 19
Найти высоту треугольника со сторонами 78, 71 и 67
Найти высоту треугольника со сторонами 61, 61 и 32
Найти высоту треугольника со сторонами 126, 118 и 24
Найти высоту треугольника со сторонами 127, 119 и 75
Найти высоту треугольника со сторонами 117, 111 и 19