Рассчитать высоту треугольника со сторонами 46, 31 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 31 + 19}{2}} \normalsize = 48}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{48(48-46)(48-31)(48-19)}}{31}\normalsize = 14.0354835}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{48(48-46)(48-31)(48-19)}}{46}\normalsize = 9.4586954}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{48(48-46)(48-31)(48-19)}}{19}\normalsize = 22.8999994}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 31 и 19 равна 14.0354835
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 31 и 19 равна 9.4586954
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 31 и 19 равна 22.8999994
Ссылка на результат
?n1=46&n2=31&n3=19
Найти высоту треугольника со сторонами 94, 92 и 36
Найти высоту треугольника со сторонами 146, 141 и 72
Найти высоту треугольника со сторонами 117, 106 и 38
Найти высоту треугольника со сторонами 46, 43 и 24
Найти высоту треугольника со сторонами 133, 101 и 69
Найти высоту треугольника со сторонами 143, 115 и 37
Найти высоту треугольника со сторонами 146, 141 и 72
Найти высоту треугольника со сторонами 117, 106 и 38
Найти высоту треугольника со сторонами 46, 43 и 24
Найти высоту треугольника со сторонами 133, 101 и 69
Найти высоту треугольника со сторонами 143, 115 и 37