Рассчитать высоту треугольника со сторонами 46, 31 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 31 + 27}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-46)(52-31)(52-27)}}{31}\normalsize = 26.111105}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-46)(52-31)(52-27)}}{46}\normalsize = 17.5966142}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-46)(52-31)(52-27)}}{27}\normalsize = 29.9794168}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 31 и 27 равна 26.111105
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 31 и 27 равна 17.5966142
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 31 и 27 равна 29.9794168
Ссылка на результат
?n1=46&n2=31&n3=27
Найти высоту треугольника со сторонами 98, 65 и 56
Найти высоту треугольника со сторонами 144, 143 и 90
Найти высоту треугольника со сторонами 135, 131 и 75
Найти высоту треугольника со сторонами 132, 127 и 25
Найти высоту треугольника со сторонами 101, 101 и 85
Найти высоту треугольника со сторонами 49, 47 и 4
Найти высоту треугольника со сторонами 144, 143 и 90
Найти высоту треугольника со сторонами 135, 131 и 75
Найти высоту треугольника со сторонами 132, 127 и 25
Найти высоту треугольника со сторонами 101, 101 и 85
Найти высоту треугольника со сторонами 49, 47 и 4