Рассчитать высоту треугольника со сторонами 46, 32 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 32 + 31}{2}} \normalsize = 54.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54.5(54.5-46)(54.5-32)(54.5-31)}}{32}\normalsize = 30.9323504}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54.5(54.5-46)(54.5-32)(54.5-31)}}{46}\normalsize = 21.5181568}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54.5(54.5-46)(54.5-32)(54.5-31)}}{31}\normalsize = 31.9301682}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 32 и 31 равна 30.9323504
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 32 и 31 равна 21.5181568
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 32 и 31 равна 31.9301682
Ссылка на результат
?n1=46&n2=32&n3=31
Найти высоту треугольника со сторонами 94, 64 и 63
Найти высоту треугольника со сторонами 82, 54 и 49
Найти высоту треугольника со сторонами 122, 95 и 71
Найти высоту треугольника со сторонами 110, 67 и 65
Найти высоту треугольника со сторонами 137, 134 и 73
Найти высоту треугольника со сторонами 140, 132 и 83
Найти высоту треугольника со сторонами 82, 54 и 49
Найти высоту треугольника со сторонами 122, 95 и 71
Найти высоту треугольника со сторонами 110, 67 и 65
Найти высоту треугольника со сторонами 137, 134 и 73
Найти высоту треугольника со сторонами 140, 132 и 83