Рассчитать высоту треугольника со сторонами 46, 33 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 33 + 20}{2}} \normalsize = 49.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{49.5(49.5-46)(49.5-33)(49.5-20)}}{33}\normalsize = 17.5997159}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{49.5(49.5-46)(49.5-33)(49.5-20)}}{46}\normalsize = 12.6258832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{49.5(49.5-46)(49.5-33)(49.5-20)}}{20}\normalsize = 29.0395312}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 33 и 20 равна 17.5997159
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 33 и 20 равна 12.6258832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 33 и 20 равна 29.0395312
Ссылка на результат
?n1=46&n2=33&n3=20
Найти высоту треугольника со сторонами 146, 119 и 46
Найти высоту треугольника со сторонами 145, 138 и 25
Найти высоту треугольника со сторонами 81, 52 и 47
Найти высоту треугольника со сторонами 136, 106 и 95
Найти высоту треугольника со сторонами 139, 134 и 61
Найти высоту треугольника со сторонами 95, 67 и 34
Найти высоту треугольника со сторонами 145, 138 и 25
Найти высоту треугольника со сторонами 81, 52 и 47
Найти высоту треугольника со сторонами 136, 106 и 95
Найти высоту треугольника со сторонами 139, 134 и 61
Найти высоту треугольника со сторонами 95, 67 и 34