Рассчитать высоту треугольника со сторонами 46, 34 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 34 + 24}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-46)(52-34)(52-24)}}{34}\normalsize = 23.3261811}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-46)(52-34)(52-24)}}{46}\normalsize = 17.2410904}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-46)(52-34)(52-24)}}{24}\normalsize = 33.0454233}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 34 и 24 равна 23.3261811
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 34 и 24 равна 17.2410904
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 34 и 24 равна 33.0454233
Ссылка на результат
?n1=46&n2=34&n3=24
Найти высоту треугольника со сторонами 120, 90 и 67
Найти высоту треугольника со сторонами 98, 86 и 18
Найти высоту треугольника со сторонами 133, 105 и 29
Найти высоту треугольника со сторонами 139, 118 и 96
Найти высоту треугольника со сторонами 106, 62 и 61
Найти высоту треугольника со сторонами 149, 139 и 34
Найти высоту треугольника со сторонами 98, 86 и 18
Найти высоту треугольника со сторонами 133, 105 и 29
Найти высоту треугольника со сторонами 139, 118 и 96
Найти высоту треугольника со сторонами 106, 62 и 61
Найти высоту треугольника со сторонами 149, 139 и 34