Рассчитать высоту треугольника со сторонами 46, 35 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 35 + 23}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-46)(52-35)(52-23)}}{35}\normalsize = 22.411076}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-46)(52-35)(52-23)}}{46}\normalsize = 17.0519056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-46)(52-35)(52-23)}}{23}\normalsize = 34.1038113}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 35 и 23 равна 22.411076
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 35 и 23 равна 17.0519056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 35 и 23 равна 34.1038113
Ссылка на результат
?n1=46&n2=35&n3=23
Найти высоту треугольника со сторонами 115, 81 и 36
Найти высоту треугольника со сторонами 136, 125 и 26
Найти высоту треугольника со сторонами 51, 50 и 32
Найти высоту треугольника со сторонами 127, 82 и 55
Найти высоту треугольника со сторонами 121, 121 и 83
Найти высоту треугольника со сторонами 75, 64 и 47
Найти высоту треугольника со сторонами 136, 125 и 26
Найти высоту треугольника со сторонами 51, 50 и 32
Найти высоту треугольника со сторонами 127, 82 и 55
Найти высоту треугольника со сторонами 121, 121 и 83
Найти высоту треугольника со сторонами 75, 64 и 47