Рассчитать высоту треугольника со сторонами 46, 35 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 35 + 28}{2}} \normalsize = 54.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54.5(54.5-46)(54.5-35)(54.5-28)}}{35}\normalsize = 27.9582451}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54.5(54.5-46)(54.5-35)(54.5-28)}}{46}\normalsize = 21.2725778}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54.5(54.5-46)(54.5-35)(54.5-28)}}{28}\normalsize = 34.9478064}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 35 и 28 равна 27.9582451
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 35 и 28 равна 21.2725778
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 35 и 28 равна 34.9478064
Ссылка на результат
?n1=46&n2=35&n3=28
Найти высоту треугольника со сторонами 140, 123 и 97
Найти высоту треугольника со сторонами 117, 71 и 60
Найти высоту треугольника со сторонами 113, 91 и 33
Найти высоту треугольника со сторонами 144, 86 и 81
Найти высоту треугольника со сторонами 80, 77 и 45
Найти высоту треугольника со сторонами 120, 93 и 51
Найти высоту треугольника со сторонами 117, 71 и 60
Найти высоту треугольника со сторонами 113, 91 и 33
Найти высоту треугольника со сторонами 144, 86 и 81
Найти высоту треугольника со сторонами 80, 77 и 45
Найти высоту треугольника со сторонами 120, 93 и 51