Рассчитать высоту треугольника со сторонами 46, 41 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 41 + 34}{2}} \normalsize = 60.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{60.5(60.5-46)(60.5-41)(60.5-34)}}{41}\normalsize = 32.843397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{60.5(60.5-46)(60.5-41)(60.5-34)}}{46}\normalsize = 29.2734625}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{60.5(60.5-46)(60.5-41)(60.5-34)}}{34}\normalsize = 39.6052729}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 41 и 34 равна 32.843397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 41 и 34 равна 29.2734625
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 41 и 34 равна 39.6052729
Ссылка на результат
?n1=46&n2=41&n3=34
Найти высоту треугольника со сторонами 115, 73 и 44
Найти высоту треугольника со сторонами 111, 78 и 78
Найти высоту треугольника со сторонами 71, 61 и 24
Найти высоту треугольника со сторонами 128, 111 и 30
Найти высоту треугольника со сторонами 138, 137 и 87
Найти высоту треугольника со сторонами 128, 83 и 67
Найти высоту треугольника со сторонами 111, 78 и 78
Найти высоту треугольника со сторонами 71, 61 и 24
Найти высоту треугольника со сторонами 128, 111 и 30
Найти высоту треугольника со сторонами 138, 137 и 87
Найти высоту треугольника со сторонами 128, 83 и 67