Рассчитать высоту треугольника со сторонами 46, 41 и 9

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 41 + 9}{2}} \normalsize = 48}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{48(48-46)(48-41)(48-9)}}{41}\normalsize = 7.89701711}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{48(48-46)(48-41)(48-9)}}{46}\normalsize = 7.03864569}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{48(48-46)(48-41)(48-9)}}{9}\normalsize = 35.9753002}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 41 и 9 равна 7.89701711
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 41 и 9 равна 7.03864569
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 41 и 9 равна 35.9753002
Ссылка на результат
?n1=46&n2=41&n3=9