Рассчитать высоту треугольника со сторонами 46, 42 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 42 + 30}{2}} \normalsize = 59}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{59(59-46)(59-42)(59-30)}}{42}\normalsize = 29.2820749}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{59(59-46)(59-42)(59-30)}}{46}\normalsize = 26.7358075}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{59(59-46)(59-42)(59-30)}}{30}\normalsize = 40.9949048}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 42 и 30 равна 29.2820749
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 42 и 30 равна 26.7358075
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 42 и 30 равна 40.9949048
Ссылка на результат
?n1=46&n2=42&n3=30
Найти высоту треугольника со сторонами 148, 146 и 140
Найти высоту треугольника со сторонами 132, 131 и 71
Найти высоту треугольника со сторонами 27, 26 и 2
Найти высоту треугольника со сторонами 109, 87 и 44
Найти высоту треугольника со сторонами 110, 77 и 50
Найти высоту треугольника со сторонами 50, 33 и 23
Найти высоту треугольника со сторонами 132, 131 и 71
Найти высоту треугольника со сторонами 27, 26 и 2
Найти высоту треугольника со сторонами 109, 87 и 44
Найти высоту треугольника со сторонами 110, 77 и 50
Найти высоту треугольника со сторонами 50, 33 и 23