Рассчитать высоту треугольника со сторонами 46, 43 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 43 + 29}{2}} \normalsize = 59}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{59(59-46)(59-43)(59-29)}}{43}\normalsize = 28.2214836}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{59(59-46)(59-43)(59-29)}}{46}\normalsize = 26.3809521}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{59(59-46)(59-43)(59-29)}}{29}\normalsize = 41.8456481}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 43 и 29 равна 28.2214836
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 43 и 29 равна 26.3809521
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 43 и 29 равна 41.8456481
Ссылка на результат
?n1=46&n2=43&n3=29
Найти высоту треугольника со сторонами 122, 96 и 27
Найти высоту треугольника со сторонами 149, 98 и 89
Найти высоту треугольника со сторонами 84, 77 и 65
Найти высоту треугольника со сторонами 148, 136 и 14
Найти высоту треугольника со сторонами 115, 80 и 50
Найти высоту треугольника со сторонами 72, 64 и 31
Найти высоту треугольника со сторонами 149, 98 и 89
Найти высоту треугольника со сторонами 84, 77 и 65
Найти высоту треугольника со сторонами 148, 136 и 14
Найти высоту треугольника со сторонами 115, 80 и 50
Найти высоту треугольника со сторонами 72, 64 и 31