Рассчитать высоту треугольника со сторонами 47, 26 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 26 + 23}{2}} \normalsize = 48}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{48(48-47)(48-26)(48-23)}}{26}\normalsize = 12.4985206}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{48(48-47)(48-26)(48-23)}}{47}\normalsize = 6.91407524}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{48(48-47)(48-26)(48-23)}}{23}\normalsize = 14.1287624}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 26 и 23 равна 12.4985206
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 26 и 23 равна 6.91407524
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 26 и 23 равна 14.1287624
Ссылка на результат
?n1=47&n2=26&n3=23
Найти высоту треугольника со сторонами 134, 115 и 113
Найти высоту треугольника со сторонами 124, 107 и 20
Найти высоту треугольника со сторонами 144, 140 и 108
Найти высоту треугольника со сторонами 135, 127 и 45
Найти высоту треугольника со сторонами 143, 139 и 44
Найти высоту треугольника со сторонами 49, 38 и 26
Найти высоту треугольника со сторонами 124, 107 и 20
Найти высоту треугольника со сторонами 144, 140 и 108
Найти высоту треугольника со сторонами 135, 127 и 45
Найти высоту треугольника со сторонами 143, 139 и 44
Найти высоту треугольника со сторонами 49, 38 и 26