Рассчитать высоту треугольника со сторонами 47, 31 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 31 + 29}{2}} \normalsize = 53.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53.5(53.5-47)(53.5-31)(53.5-29)}}{31}\normalsize = 28.2472499}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53.5(53.5-47)(53.5-31)(53.5-29)}}{47}\normalsize = 18.6311648}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53.5(53.5-47)(53.5-31)(53.5-29)}}{29}\normalsize = 30.1953361}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 31 и 29 равна 28.2472499
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 31 и 29 равна 18.6311648
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 31 и 29 равна 30.1953361
Ссылка на результат
?n1=47&n2=31&n3=29
Найти высоту треугольника со сторонами 143, 102 и 44
Найти высоту треугольника со сторонами 125, 123 и 45
Найти высоту треугольника со сторонами 138, 126 и 97
Найти высоту треугольника со сторонами 99, 95 и 72
Найти высоту треугольника со сторонами 143, 107 и 39
Найти высоту треугольника со сторонами 86, 63 и 26
Найти высоту треугольника со сторонами 125, 123 и 45
Найти высоту треугольника со сторонами 138, 126 и 97
Найти высоту треугольника со сторонами 99, 95 и 72
Найти высоту треугольника со сторонами 143, 107 и 39
Найти высоту треугольника со сторонами 86, 63 и 26