Рассчитать высоту треугольника со сторонами 47, 32 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 32 + 19}{2}} \normalsize = 49}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{49(49-47)(49-32)(49-19)}}{32}\normalsize = 13.9726295}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{49(49-47)(49-32)(49-19)}}{47}\normalsize = 9.51327966}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{49(49-47)(49-32)(49-19)}}{19}\normalsize = 23.5328497}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 32 и 19 равна 13.9726295
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 32 и 19 равна 9.51327966
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 32 и 19 равна 23.5328497
Ссылка на результат
?n1=47&n2=32&n3=19
Найти высоту треугольника со сторонами 97, 93 и 21
Найти высоту треугольника со сторонами 123, 84 и 75
Найти высоту треугольника со сторонами 136, 100 и 92
Найти высоту треугольника со сторонами 119, 113 и 101
Найти высоту треугольника со сторонами 145, 139 и 15
Найти высоту треугольника со сторонами 116, 116 и 99
Найти высоту треугольника со сторонами 123, 84 и 75
Найти высоту треугольника со сторонами 136, 100 и 92
Найти высоту треугольника со сторонами 119, 113 и 101
Найти высоту треугольника со сторонами 145, 139 и 15
Найти высоту треугольника со сторонами 116, 116 и 99