Рассчитать высоту треугольника со сторонами 47, 34 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 34 + 23}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-47)(52-34)(52-23)}}{34}\normalsize = 21.6707032}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-47)(52-34)(52-23)}}{47}\normalsize = 15.6766789}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-47)(52-34)(52-23)}}{23}\normalsize = 32.0349526}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 34 и 23 равна 21.6707032
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 34 и 23 равна 15.6766789
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 34 и 23 равна 32.0349526
Ссылка на результат
?n1=47&n2=34&n3=23
Найти высоту треугольника со сторонами 83, 80 и 19
Найти высоту треугольника со сторонами 129, 89 и 62
Найти высоту треугольника со сторонами 60, 38 и 36
Найти высоту треугольника со сторонами 125, 82 и 48
Найти высоту треугольника со сторонами 30, 24 и 8
Найти высоту треугольника со сторонами 130, 102 и 64
Найти высоту треугольника со сторонами 129, 89 и 62
Найти высоту треугольника со сторонами 60, 38 и 36
Найти высоту треугольника со сторонами 125, 82 и 48
Найти высоту треугольника со сторонами 30, 24 и 8
Найти высоту треугольника со сторонами 130, 102 и 64