Рассчитать высоту треугольника со сторонами 47, 39 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 39 + 18}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-47)(52-39)(52-18)}}{39}\normalsize = 17.3845397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-47)(52-39)(52-18)}}{47}\normalsize = 14.4254692}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-47)(52-39)(52-18)}}{18}\normalsize = 37.6665028}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 39 и 18 равна 17.3845397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 39 и 18 равна 14.4254692
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 39 и 18 равна 37.6665028
Ссылка на результат
?n1=47&n2=39&n3=18
Найти высоту треугольника со сторонами 145, 133 и 91
Найти высоту треугольника со сторонами 99, 90 и 58
Найти высоту треугольника со сторонами 150, 106 и 53
Найти высоту треугольника со сторонами 109, 70 и 49
Найти высоту треугольника со сторонами 97, 80 и 39
Найти высоту треугольника со сторонами 97, 95 и 61
Найти высоту треугольника со сторонами 99, 90 и 58
Найти высоту треугольника со сторонами 150, 106 и 53
Найти высоту треугольника со сторонами 109, 70 и 49
Найти высоту треугольника со сторонами 97, 80 и 39
Найти высоту треугольника со сторонами 97, 95 и 61