Рассчитать высоту треугольника со сторонами 47, 40 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 40 + 38}{2}} \normalsize = 62.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{62.5(62.5-47)(62.5-40)(62.5-38)}}{40}\normalsize = 36.5384536}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{62.5(62.5-47)(62.5-40)(62.5-38)}}{47}\normalsize = 31.0965563}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{62.5(62.5-47)(62.5-40)(62.5-38)}}{38}\normalsize = 38.4615301}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 40 и 38 равна 36.5384536
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 40 и 38 равна 31.0965563
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 40 и 38 равна 38.4615301
Ссылка на результат
?n1=47&n2=40&n3=38
Найти высоту треугольника со сторонами 150, 133 и 32
Найти высоту треугольника со сторонами 118, 97 и 71
Найти высоту треугольника со сторонами 133, 129 и 103
Найти высоту треугольника со сторонами 12, 9 и 7
Найти высоту треугольника со сторонами 90, 58 и 49
Найти высоту треугольника со сторонами 150, 138 и 132
Найти высоту треугольника со сторонами 118, 97 и 71
Найти высоту треугольника со сторонами 133, 129 и 103
Найти высоту треугольника со сторонами 12, 9 и 7
Найти высоту треугольника со сторонами 90, 58 и 49
Найти высоту треугольника со сторонами 150, 138 и 132