Рассчитать высоту треугольника со сторонами 47, 41 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 41 + 15}{2}} \normalsize = 51.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{51.5(51.5-47)(51.5-41)(51.5-15)}}{41}\normalsize = 14.5377465}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{51.5(51.5-47)(51.5-41)(51.5-15)}}{47}\normalsize = 12.681864}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{51.5(51.5-47)(51.5-41)(51.5-15)}}{15}\normalsize = 39.7365071}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 41 и 15 равна 14.5377465
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 41 и 15 равна 12.681864
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 41 и 15 равна 39.7365071
Ссылка на результат
?n1=47&n2=41&n3=15
Найти высоту треугольника со сторонами 135, 112 и 28
Найти высоту треугольника со сторонами 146, 128 и 123
Найти высоту треугольника со сторонами 126, 111 и 92
Найти высоту треугольника со сторонами 112, 85 и 54
Найти высоту треугольника со сторонами 62, 56 и 17
Найти высоту треугольника со сторонами 125, 103 и 87
Найти высоту треугольника со сторонами 146, 128 и 123
Найти высоту треугольника со сторонами 126, 111 и 92
Найти высоту треугольника со сторонами 112, 85 и 54
Найти высоту треугольника со сторонами 62, 56 и 17
Найти высоту треугольника со сторонами 125, 103 и 87